Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.06.06.446826

Résumé

Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.

2.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.23.436648

Résumé

Repurposing drugs as treatments for COVID-19 has drawn much attention. A common strategy has been to screen for established drugs, typically developed for other indications, that are antiviral in cells or organisms. Intriguingly, most of the drugs that have emerged from these campaigns, though diverse in structure, share a common physical property: cationic amphiphilicity. Provoked by the similarity of these repurposed drugs to those inducing phospholipidosis, a well-known drug side effect, we investigated phospholipidosis as a mechanism for antiviral activity. We tested 23 cationic amphiphilic drugs-including those from phenotypic screens and others that we ourselves had found-for induction of phospholipidosis in cell culture. We found that most of the repurposed drugs, which included hydroxychloroquine, azithromycin, amiodarone, and four others that have already progressed to clinical trials, induced phospholipidosis in the same concentration range as their antiviral activity; indeed, there was a strong monotonic correlation between antiviral efficacy and the magnitude of the phospholipidosis. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the gross physical properties of drugs, and does not reflect specific target-based activities, rather it may be considered a confound in early drug discovery. Understanding its role in infection, and detecting its effects rapidly, will allow the community to better distinguish between drugs and lead compounds that more directly impact COVID-19 from the large proportion of molecules that manifest this confounding effect, saving much time, effort and cost.


Sujets)
COVID-19
3.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.427991

Résumé

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths worldwide and massive societal and economic burden. Recently, a new variant of SARS-CoV-2, known as B.1.1.7, was first detected in the United Kingdom and is spreading in several other countries, heightening public health concern and raising questions as to the resulting effectiveness of vaccines and therapeutic interventions. We and others previously identified host-directed therapies with antiviral efficacy against SARS-CoV-2 infection. Less prone to the development of therapy resistance, host-directed drugs represent promising therapeutic options to combat emerging viral variants as host genes possess a lower propensity to mutate compared to viral genes. Here, in the first study of the full-length B.1.1.7 variant virus, we find two host-directed drugs, plitidepsin (aplidin; inhibits translation elongation factor eEF1A) and ralimetinib (inhibits p38 MAP kinase cascade), as well as remdesivir, to possess similar antiviral activity against both the early-lineage SARS-CoV-2 and the B.1.1.7 variant, evaluated in both human gastrointestinal and lung epithelial cell lines. We find that plitidepsin is over an order of magnitude more potent than remdesivir against both viruses. These results highlight the importance of continued development of host-directed therapeutics to combat current and future coronavirus variant outbreaks.


Sujets)
Infections à coronavirus , COVID-19
4.
David E. Gordon; Gwendolyn M. Jang; Mehdi Bouhaddou; Jiewei Xu; Kirsten Obernier; Jeffrey Z. Guo; Danielle L. Swaney; Tia A. Tummino; Ruth Huttenhain; Robyn M. Kaake; Alicia L. Richards; Beril Tutuncuoglu; Helene Foussard; Jyoti Batra; Kelsey Haas; Maya Modak; Minkyu Kim; Paige Haas; Benjamin J. Polacco; Hannes Braberg; Jacqueline M. Fabius; Manon Eckhardt; Margaret Soucheray; Melanie J. Bennett; Merve Cakir; Michael J. McGregor; Qiongyu Li; Zun Zar Chi Naing; Yuan Zhou; Shiming Peng; Ilsa T. Kirby; James E. Melnyk; John S Chorba; Kevin Lou; Shizhong A. Dai; Wenqi Shen; Ying Shi; Ziyang Zhang; Inigo Barrio-Hernandez; Danish Memon; Claudia Hernandez-Armenta; Christopher J.P. Mathy; Tina Perica; Kala B. Pilla; Sai J. Ganesan; Daniel J. Saltzberg; Rakesh Ramachandran; Xi Liu; Sara B. Rosenthal; Lorenzo Calviello; Srivats Venkataramanan; Jose Liboy-Lugo; Yizhu Lin; Stephanie A. Wankowicz; Markus Bohn; Phillip P. Sharp; Raphael Trenker; Janet M. Young; Devin A. Cavero; Joseph Hiatt; Theo Roth; Ujjwal Rathore; Advait Subramanian; Julia Noack; Mathieu Hubert; Ferdinand Roesch; Thomas Vallet; Björn Meyer; Kris M. White; Lisa Miorin; Oren S. Rosenberg; Kliment A. Verba; David Agard; Melanie Ott; Michael Emerman; Davide Ruggero; Adolfo Garc&iacute-Sastre; Natalia Jura; Mark von Zastrow; Jack Taunton; Alan Ashworth; Olivier Schwartz; Marco Vignuzzi; Shaeri Mukherjee; Matt Jacobson; Harmit S. Malik; Danica G Fujimori; Trey Ideker; Charles S Craik; Stephen Floor; James S. Fraser; John Gross; Andrej Sali; Tanja Kortemme; Pedro Beltrao; Kevan Shokat; Brian K. Shoichet; Nevan J. Krogan.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.03.22.002386

Résumé

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.


Sujets)
COVID-19 , Maladies de l'appareil respiratoire , Infections à virus oncogènes
SÉLECTION CITATIONS
Détails de la recherche